Search results for "Solid-state physics"

showing 10 items of 112 documents

Some aspects of the solid state physics of yellow arsenic

1996

Absorption spectroscopychemistryPolymerizationSolid-state physicsChemical engineeringAnnealing (metallurgy)Yellow arsenicchemistry.chemical_elementCondensed Matter PhysicsArsenicElectronic Optical and Magnetic Materialsphysica status solidi (b)
researchProduct

Intense laser effects on donor impurity in a cylindrical single and vertically coupled quantum dots under combined effects of hydrostatic pressure an…

2010

WOS: 000280235800010

ChemistryHydrostatic pressureBinding energyGeneral Physics and AstronomySurfaces and InterfacesGeneral ChemistryCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsSurfaces Coatings and FilmsEffective mass (solid-state physics)Quantum wellsImpurityQuantum dotIntense laser effectsElectric fieldElectric fieldRectangular potential barrierAtomic physicsHydrostatic pressureImpurityQuantum well
researchProduct

Struktūra un fotofizikālie procesi 0D un 1D InGaN kompozītu materiālos

2014

Šajā disertācijā tiek aprakstīti strukturālās un fotofizikālās MOCVD izaudzēto GaN nanovadu (NV) un InGaN kvantu punktu (KP) īpašības. Abos gadījumos ir parādīts, ka ex-situ RHEED mērījumi ir iespējami un sniedz kvalitatīvu informāciju par struktūru. Kombinācijā ar citām metodēm, pirmkārt, ir parādīts, ka nemetāliskā katalizatora veicinātā GaN NV īpašības, kad sintezēts uz GaN (0001) virsmas, atšķiras no tradicionāli iegūtajiem. Šinī gadījumā katalizators lokalizējas pie nanovadu pamatnes nevis tā galā un augšanas virziens ir atšķirīgs no kristalogrāfiskās c-ass, rezultātā iegūstot semipolārās NV struktūras. Otrkārt, InGaN kvantu punktos ir konstatēt saspiesta kristāliskā režģa struktūra au…

Cietvielu fizikanemetālisks katalizatorsSolid-state physicsnon-metallic catalistGaN nanowiresInGaN quantum dotsFizika materiālzinātne matemātika un statistikaInGaN kvantu punktinano-SIMSGaN nanovadiFizikaex-situ RHEEDFizika astronomija un mehānika
researchProduct

Quantum-well states in ultrathin Ag(111) films deposited onto H-passivated Si(111)-(1x1) surfaces

2002

Ag(111) films were deposited at room temperature onto H-passivated Si(111)-(1x1) substrates, and subsequently annealed at 300 C. An abrupt non-reactive Ag/Si interface is formed, and very uniform non-strained Ag(111) films of 6-12 monolayers have been grown. Angle resolved photoemission spectroscopy has been used to study the valence band electronic properties of these films. Well-defined Ag sp quantum-well states (QWS) have been observed at discrete energies between 0.5-2eV below the Fermi level, and their dispersions have been measured along the GammaK, GammaMM'and GammaL symmetry directions. QWS show a parabolic bidimensional dispersion, with in-plane effective mass of 0.38-0.50mo, along…

Condensed Matter - Materials ScienceMaterials scienceCondensed matter physicsPhotoemission spectroscopyBinding energyFermi levelMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesQuantum well states02 engineering and technologyElectronCondensed Matter - Soft Condensed Matter021001 nanoscience & nanotechnology01 natural sciencessymbols.namesakeEffective mass (solid-state physics)0103 physical sciencesValence bandsymbols[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Soft Condensed Matter (cond-mat.soft)010306 general physics0210 nano-technologyDispersion (chemistry)[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft]
researchProduct

Depolarization Field and Properties of Thin Ferroelectric Films with Inclusion of the Electrode Effect

2005

The influence of metallic electrodes on the properties of thin ferroelectric films is considered in the framework of the Ginzburg-Landau phenomenological theory. The contribution of the electrodes with different screening lengths l s of carriers in the electrode material is included in the free-energy functional. The critical temperature T cl , the critical thickness of the film, and the critical screening length of the electrode at which the ferroelectric phase transforms into the paraelectric phase are calculated. The Euler-Lagrange equation for the polarization P is solved by the direct variational method. The results demonstrate that the film properties can be calculated by minimizing t…

Condensed Matter::Materials ScienceMaterials scienceCondensed matter physicsSolid-state physicsPhase (matter)ElectrodeDielectricCondensed Matter PhysicsPolarization (electrochemistry)Critical valueFerroelectricityElectronic Optical and Magnetic MaterialsPyroelectricityPhysics of the Solid State
researchProduct

Atomic lattice excitons: from condensates to crystals

2007

We discuss atomic lattice excitons (ALEs), bound particle-hole pairs formed by fermionic atoms in two bands of an optical lattice. Such a system provides a clean setup to study fundamental properties of excitons, ranging from condensation to exciton crystals (which appear for a large effective mass ratio between particles and holes). Using both mean-field treatments and 1D numerical computation, we discuss the properities of ALEs under varying conditions, and discuss in particular their preparation and measurement.

Condensed Matter::Quantum GasesOptical latticeMaterials scienceExcitonComputationFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesMolecular physics010305 fluids & plasmasCondensed Matter - Other Condensed MatterEffective mass (solid-state physics)0103 physical sciencesAtomic lattice010306 general physicsOther Condensed Matter (cond-mat.other)New Journal of Physics
researchProduct

Quantum signatures in the dynamics of two dipole-dipole interacting soft dimers

2006

The quantum covariances of physically transparent pairs of observables relative to two dimers hosted in a solid matrix are exactly investigated in the temporal domain. Both dimers possess fermionic and bosonic degrees of freedom and are dipolarly coupled. We find out and describe clear signatures traceable back to the presence and persistence of quantum coherence in the time evolution of the system. Manifestations of a competition between intramolecular and intermolecular energy migration mechanisms are brought to light. The experimental relevance of our results is briefly commented.

Condensed Matter::Quantum GasesPhysicsIONSSolid-state physicsIntermolecular forceTime evolutionObservableGLASSCondensed Matter PhysicsSTATEElectronic Optical and Magnetic MaterialsCRYSTALSDipoleQuantum mechanicsIntramolecular forceCAVITYQuantumCoherence (physics)
researchProduct

Magnetic quantum criticality in quasi-one-dimensional Heisenberg antiferromagnet Cu (C4H4N2)( NO 3)2

2016

We analyze exciting recent measurements [Phys. Rev. Lett. 114 (2015) 037202] of the magnetization, differential susceptibility and specific heat on one dimensional Heisenberg antiferromagnet Cu(C4H4N2)(NO3)2 (CuPzN) subjected to strong magnetic fields. Using the mapping between magnons (bosons) in CuPzN and fermions, we demonstrate that magnetic field tunes the insulator towards quantum critical point related to so-called fermion condensation quantum phase transition (FCQPT) at which the resulting fermion effective mass diverges kinematically. We show that the FCQPT concept permits to reveal the scaling behavior of thermodynamic characteristics, describe the experimental results quantitativ…

Condensed Matter::Quantum GasesPhysicsQuantum phase transitionCondensed matter physicsMagnonGeneral Physics and Astronomy02 engineering and technologyFermion021001 nanoscience & nanotechnology01 natural sciencesMagnetizationEffective mass (solid-state physics)Quantum mechanicsQuantum critical point0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsStrongly correlated material010306 general physics0210 nano-technologyBosonAnnalen der Physik
researchProduct

FERMION CONDENSATION, T -LINEAR RESISTIVITY AND PLANCKIAN LIMIT

2019

We explain recent challenging experimental observations of universal scattering rate related to the linear-temperature resistivity exhibited by a large corps of both strongly correlated Fermi systems and conventional metals. We show that the observed scattering rate in strongly correlated Fermi systems like heavy fermion metals and high-$T_c$ superconductors stems from phonon contribution that induce the linear temperature dependence of a resistivity. The above phonons are formed by the presence of flat band, resulting from the topological fermion condensation quantum phase transition (FCQPT). We emphasize that so - called Planckian limit, widely used to explain the above universal scatteri…

Condensed Matter::Quantum GasesPhysicsSuperconductivityQuantum phase transitionQuantum PhysicsStrongly Correlated Electrons (cond-mat.str-el)Physics and Astronomy (miscellaneous)Condensed matter physicsSolid-state physicsPhononFOS: Physical sciencesFermion01 natural sciences010305 fluids & plasmasCondensed Matter - Strongly Correlated ElectronsElectrical resistivity and conductivityLattice (order)Scattering rate0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsQuantum Physics (quant-ph)010306 general physicsПИСЬМА В ЖУРНАЛ ЭКСПЕРИМЕНТАЛЬНОЙ И ТЕОРЕТИЧЕСКОЙ ФИЗИКИ
researchProduct

Dipole surface plasmon in K+N clusters

1992

Abstract The technique of sum rules has been used to investigate the dipole surface plasmon for K + N clusters within a Density Functional Theory and the spherical jellium model. The role played by non-local effects is discussed comparing the results obtained from different functionals. Band-structure and core-polarization effects have been phenomenologically included in the calculation by means of an electron effective mass and a dielectric constant. Comparison with recent experimental data is presented.

Condensed matter physicsChemistryJelliumSurface plasmonGeneral ChemistryDielectricCondensed Matter PhysicsMolecular physicsSpherical modelDipoleEffective mass (solid-state physics)Materials ChemistryDensity functional theorySum rule in quantum mechanicsSolid State Communications
researchProduct